转载网友原创--中国抗击美航母的利器(6)

美军航母群包含十余艘高速舰艇,与常规商船队差异极大,我天波雷达将从2500-3500千米距离开始对其进行跟踪,并通过电子侦察卫星、监听站和侦察卫星进一步排除商船队,确认航空母舰的位置;并在航母群派出机群靠近战区,大规模发射导弹时发出警报。远程侦察系统对航母的持续跟踪定位精度为2-3千米(电子侦察卫星)、5-10千米(天波雷达),每隔40分钟卫星过顶时的定位精度为1-2千米。美军无法隐藏其舰队位置,始终处于我监控之下。A航母战斗群内的三艘航母代号航1至航3,前方防御的8艘驱逐舰代号驱1至驱8,其中具备弹道导弹拦截能力的驱2至驱5前出200千米,驱7至驱8前出100千米。驱1、驱6无导弹拦截能力,分别前出200、100千米进行防御。经电子侦察卫星确认驱1、3、5、8雷达开机。



三种不同途径搜索的美军航母、驱逐舰位置经光缆传递到二炮反舰弹道导弹旅,经综合分析后确认目标初始位置,假设误差为3千米;分析美军航母群驱逐舰位置后决定首轮打击目标为A航母群的驱3、驱5,共发射4枚导弹,射程1400千米;次轮打击目标为航1-航3,发射12枚导弹,射程1600千米,两轮发射间隔时间180秒。导弹装填数据后发射,以首轮导弹发射时间为T-0时间。



T-0秒,首批4枚DF-21E型反舰弹道导弹发射,产生尾焰、羽流和柱状烟雾。导弹的固体火箭发动机可以采用缩水甘油叠氮聚醚低温燃烧剂降低发动机尾焰温度,加入钾盐抑制二次燃烧,降低尾焰中CO2、HO2浓度,用发泡高分子物抑制烟雾,用添加剂使发出的红外辐射避开大气窗口,在发射场上空的大气层中喷洒气溶胶等技术,来降低美国导弹预警卫星的发现概率。



T-15秒,美国天基红外系统同步轨道预警卫星发现弹道导弹发射。天基红外预警卫星灵敏度比DSP卫星提高10倍多,能够透过大气层进行观察,但考虑导弹采用了多种红外隐身技术可以降低大气窗口的红外辐射,大约要到空气稀薄的10千米以上高度才会失去大气掩护,因此判定卫星发现时间延迟15秒。同步轨道预警卫星同时携带扫描型和凝视型红外探测器,分别用于大范围探测和小区域持续监视,如果导弹采用机动发射方式脱离探测器可能进行监视的范围,就能延缓被发现的时间。



T-25秒,预警卫星完成导弹轨迹测量。天基红外预警卫星发现红外辐射时首先要根据红外特性分辨出其波长范围和特性,进而推断其温度甚至推进剂种类,据此分析分辨出目标的类型(如弹道导弹或者运载火箭),然后测量目标的矢量速度。由于采用红外探测器,观察到的导弹轨迹是一个个连续的点,所以必须积累足够多的数据才能判定目标轨迹,SBIRS-H卫星的扫描型红外探测器扫描周期为1秒,号称在10秒钟内能够完成导弹轨迹测量。但是用红外设备测量弹道导弹的轨迹,必须2-3颗卫星在不同角度同时观测才能得出三维空间内的弹道,单颗卫星只能得出一维平面上的投影,而融合其它预警卫星的观测数据不可能由预警卫星自行完成,必须经过地面控制站处理,所以这时候得出的导弹轨迹缺乏弹道高度与倾角,仅仅是弹道在平面投影的速度矢量,而不是导弹的真实速度矢量,因此无法预测导弹的目标。



T-30秒,预警卫星发出导弹发射警报,将信号传递给战区内的联合战术地面站(JTAGS)、澳大利亚的海外地面站和美国本土夏沿山的的北美防空防天司令部、美国航天司令部预警中心,进行数据融合与处理,得出导弹三维空间飞行轨迹。弹道导弹的抛物线轨迹,其水平加速度是一个累积数据的平均值,必需有一定时间积累才能推算轨道,例如发动机推力不变,但工作时间延长50%,其弹道必然不同,因此仅靠10秒钟内观测到的飞行轨迹还不足以判定导弹落点。而且现代弹道导弹多采用机动变轨技术,不等到主动段结束无法确定其最终弹道,所以真正的导弹落点预测不会很快得出,也就无法对战区内部队发出警报。



T-50秒,依据预警/跟踪卫星提供的导弹飞行轨迹,部署在琉球、韩国的X波段导弹跟踪雷达(GBR雷达)搜索目标。X波段导弹跟踪雷达最大探测距离4000千米,波束宽0.14度,难以自行探测目标,必须等待导弹跟踪卫星或者跟踪雷达的精确信息才能发现目标。对雷达反射截面积(RCS)为3.45、1.0、0.1平米的目标,GBR雷达最大探测距离分别为4000、2100、1200千米,跟踪距离分别为2800、1200、800千米。根据公式判断对正面RCS为0.001平米的弹头,GBR雷达的发现/搜索距离为530/320千米,对侧面的发现/搜索距离为800/500—1000/600千米,勉强能发现我军在赣州以南地区发射的导弹弹头,但跟踪弹体没有问题。X波段跟踪雷达在前沿部署,我军可以使用图-154大型电子干扰机和中小型无人电子干扰机对其进行近距离干扰,破坏其对弹道导弹的跟踪。例如用运输机发射多架小型一次性散布式无人电子干扰机,可对敌雷达实施近距离主瓣干扰和多方向干扰,能挫败敌方的低副瓣天线技术、副瓣对消技术、波瓣自适应调零等抗干扰措施以及雷达组网技术。当干扰机距敌雷达距离减小10倍,则干扰强度增加100倍;若干扰源分布较密,可对雷达实施主瓣干扰或高副瓣区干扰,使干扰效果提高40dB-60dB。



射程1500千米的弹道导弹全程飞行时间不过12分钟,因此干扰机无需工作很长时间;而要实现对高空弹道导弹的掩护,要求干扰机的位置必须很高,所以可采用远程火箭弹搭载干扰机实施干扰。例如WS-2火箭炮弹头重200千克,超过中型无人机的搭载重量;实际射程估计超过240千米,最大射高90千米,当使用船载发射系统时完全可以从别国领海线外覆盖琉球/韩国全境;通过预设程序控制火箭蛋飞行轨迹,使其全程掩护反舰弹道导弹不被雷达探测。因此判定X波段跟踪雷达不能有效跟踪弹道导弹,无法引导拦截弹提前发射。当然,这是建立在当地美军未参与对我军攻击的前提下,如果前提不存在,那直接发射短程弹道导弹/巡航导弹摧毁GBR雷达即可。



T-120秒,首批导弹二级火箭发动机关机脱离。天基红外预警系统由于用多颗卫星对导弹助推段进行凝视跟踪,因此跟踪精度比国防支援计划(DSP)卫星高出许多,可精确给出导弹关机点参数,便于对导弹落点的计算。



T-135秒,联合战术地面站计算出首批导弹的落点,为台湾东海岸佳山基地,距离A航母群前方驱逐舰800千米,美军向台军发出导弹袭击警报。



T-180秒,我军第二批12枚导弹发射。两轮发射间隔180秒,首批导弹摧毁敌舰之后,第二轮导弹才通过敌舰上空,避免被拦截。



T-195秒,美军同步轨道预警卫星发现第二批导弹发射,开始进行跟踪。



T-200秒,美军GBR雷达搜索目标,我军再次实施干扰。由于导弹数量多飞行弹道差异大,干扰效果不如首轮,判定雷达能够发现导弹,但无法持续跟踪。如果美军要协助台军拦截首批导弹,那么GBR雷达由于正在跟踪首批导弹以精确确定弹道,是否会转而跟踪第二批导弹尚未可知。



T-205秒,美军完成第二批导弹轨迹测量。



T-210秒,预警卫星发出第二批导弹发射警报,地面站进行数据融合与处理,得出导弹三维空间飞行轨迹。



T-300秒,第二批导弹二级火箭发动机关机;首批导弹越过弹道最高点下滑10千米,第三级固液混合火箭发动机点火;美军同步轨道导弹预警卫星发现导弹点火并对其进行跟踪。东风-21导弹通过加装第三级火箭发动机,将传统的抛物线弹道转变为具有多个波峰的跳跃式弹道,降低了弹道最高点高度,使得拦截系统在导弹再入大气层之前很难计算其最终落点。导弹防御系统对导弹轨迹的预测是将弹道限定在一个管形区内,在导弹飞行的过程中,根据已知弹道数据,逐渐缩小预测弹道管形区的半径,当其小于拦截弹的机动半径时就可进行拦截。而弹道跳跃的幅度越大,管形区的面积就会越大,给防御系统的预测带来更大的困难,从而大大提高了导弹的突防能力。



T-310秒,同步轨道预警卫星完成首批导弹第一次跳跃弹道轨迹测量。



T-315秒,预警卫星发出首批导弹空间弹道变轨警报;地面站计算出第二批导弹落点位于台湾东南200千米,距离A航母群前方驱逐舰600千米的海域;美军判断多枚导弹不可能同时产生故障,也不可能仅用来扰乱视线,目标必定是A航母群,对其发出导弹来袭警报,并调动低轨道跟踪卫星持续跟踪导弹。海基中段导弹防御系统启动,开始接收导弹弹道轨迹信息,并指挥AN/SPY-1E雷达搜索目标。只有在水面舰艇群与导弹预警系统信息实时交联、随时知道航母群位置的情况下才可能快速得出导弹目标信息,否则依靠人工查询还要有时间延误,在此假设美军已经具备这一能力,也就是说数据链时刻发射无线电波进行联系,供我电子侦察卫星、地面监听站搜索目标。航母群驱2、4、7雷达开机,试图参与导弹拦截。但宙斯盾雷达采用电子管,必须进行预热;各系统必须分别开机,否则电流过载太大无法启动;各系统开机后必须进行自检,无法直接探测目标;整个雷达系统开机要10-15分钟,根本来不及拦截导弹。



T-330秒,首批导弹第三级火箭发动机第一次关机,导弹第二个抛物线弹道长300千米,高差10千米。



T-345秒,地面站计算首批导弹落点为我国警戒舰队附近。美军地面站判断这是用于打击美军航母群的机动变轨导弹,对A航母群导弹拦截指挥控制系统传递导弹信息。



T-380秒,首批导弹第三级火箭发动机第二次点火,导弹进入第三个抛物线弹道。



T-410秒,首批导弹第三级火箭发动机第二次关机并与弹头脱离。导弹第二个抛物线弹道长300千米,高差10千米。



T-420秒,首批导弹释放诱饵;第二批12枚导弹第三级火箭发动机第一次关机。虽然美国天基红外系统的跟踪卫星号称可以跟踪发动机分离后的导弹弹头,观测诱饵的释放、膨胀情况,但是一方面美国计划于2010年建立的跟踪卫星星座只有9颗卫星,与最初计划的24、30颗卫星相去甚远,必然影响卫星的覆盖范围,从而导致无法形成连续、严密的观测网,拉大与导弹之间的距离,使原本在1000千米距离上最小8米的分辨率进一步下降;另一方面卫星系统现在要观测两批16枚导弹,尤其打击航母的第二批导弹更是重点拦截目标,很难说美军会调动全部跟踪卫星来观测首批导弹,这会导致原本就不高的观测能力再次下降。而且如果跟踪卫星的能力强大到可以依靠持续观测目标运动和施放诱饵的过程来分辨假目标,那美国国内就没有必要为导弹防御系统的识别能力而争吵不休,更不会与此同时削减低轨道跟踪卫星星座项目,将30颗卫星的庞大观测网砍到只剩9颗卫星的实验系统。所以这里不采用跟踪卫星可以观测诱饵释放来识别假目标的说法。

猜你感兴趣

更多 >>

评论

评 论

更多精彩内容